Cuando aprende a codificar por primera vez, es común aprender matrices como la "estructura de datos principal".
Con el tiempo, también aprenderá hash tables
. Si está buscando un título en Ciencias de la Computación, debe tomar una clase sobre estructura de datos. También podrá aprender acerca de linked lists
, queues
y stacks
. Esas estructuras de datos se denominan estructuras de datos "lineales" porque todas tienen un comienzo lógico y un final lógico.
Cuando empezamos a aprender sobre trees
y graphs
, puede resultar realmente confuso. No almacenamos datos de forma lineal. Ambas estructuras de datos almacenan datos de una manera específica.
Esta publicación es para ayudarlo a comprender mejor la estructura de datos del árbol y para aclarar cualquier confusión que pueda tener al respecto.
En este artículo, aprenderemos:
- Que es un arbol
- Ejemplos de árboles
- Su terminología y cómo funciona
- Cómo implementar estructuras de árbol en el código.
Comencemos este viaje de aprendizaje. :)
Definición
Al comenzar a programar, es común comprender mejor las estructuras de datos lineales que las estructuras de datos como árboles y gráficos.
Los árboles son bien conocidos como una estructura de datos no lineal. No almacenan datos de forma lineal. Organizan los datos jerárquicamente.
¡Vamos a sumergirnos en ejemplos de la vida real!
¿A qué me refiero cuando digo de manera jerárquica?
Imagine un árbol genealógico con relaciones de todas las generaciones: abuelos, padres, hijos, hermanos, etc. Normalmente organizamos los árboles genealógicos jerárquicamente.

El dibujo de arriba es mi árbol genealógico. Tossico, Akikazu, Hitomi,
y Takemi
son mis abuelos.
Toshiaki
y Juliana
son mis padres.
TK, Yuji, Bruno
, y Kaio
son los hijos de mis padres (yo y mis hermanos).
La estructura de una organización es otro ejemplo de jerarquía.

En HTML, el Modelo de objetos de documento (DOM) funciona como un árbol.

La HTML
etiqueta contiene otras etiquetas. Tenemos una head
etiqueta y una body
etiqueta. Esas etiquetas contienen elementos específicos. La head
etiqueta tiene etiquetas meta
y title
. La body
etiqueta tiene elementos que se muestran en la interfaz de usuario, por ejemplo, h1
, a
, li
, etc.
Una definición técnica
A tree
es una colección de entidades llamadas nodes
. Los nodos están conectados por edges
. Cada uno node
contiene un value
o data
, y puede tener o no un child node
.

El first node
de tree
se llama root
. Si root node
está conectado por otro node
, root
entonces es a parent node
y el conectado node
es a child
.

Todos Tree nodes
están conectados por enlaces llamados edges
. Es una parte importante de trees
, porque gestiona la relación entre nodes
.

Leaves
son los últimos nodes
en un tree.
Son nodos sin hijos. Al igual que los árboles reales, tenemos el root
, branches
y finalmente el leaves
.

Otros conceptos importantes para comprender son height
y depth
.
El height
de a tree
es la longitud del camino más largo hacia a leaf
.
El depth
de a node
es la longitud del camino a su root
.
Resumen de terminología
- La raíz es la más alta
node
detree
- Edge es el vínculo entre dos
nodes
- El niño es un
node
que tieneparent node
- El padre es un
node
que tiene unedge
achild node
- Leaf es un
node
que no tienechild node
en eltree
- La altura es la longitud del camino más largo a un
leaf
- La profundidad es la longitud del camino hasta su
root
Árboles binarios
Ahora discutiremos un tipo específico de tree
. Lo llamamos el binary tree
.
Así que veamos un ejemplo de binary tree
.

Codifiquemos un árbol binario
The first thing we need to keep in mind when we implement a binary tree
is that it is a collection of nodes
. Each node
has three attributes: value
, left_child
, and right_child
.
How do we implement a simple binary tree
that initializes with these three properties?
Let’s take a look.
class BinaryTree: def __init__(self, value): self.value = value self.left_child = None self.right_child = None
Here it is. Our binary tree
class.
When we instantiate an object, we pass the value
(the data of the node) as a parameter. Look at the left_child
and the right_child
. Both are set to None
.
Why?
Because when we create our node
, it doesn’t have any children. We just have the node data
.
Let’s test it:
tree = BinaryTree('a') print(tree.value) # a print(tree.left_child) # None print(tree.right_child) # None
That’s it.
We can pass the string
‘a
’ as the value
to our Binary Tree node
. If we print the value
, left_child
, and right_child
, we can see the values.
Let’s go to the insertion part. What do we need to do here?
We will implement a method to insert a new node
to the right
and to the left
.
Here are the rules:
- If the current
node
doesn’t have aleft child
, we just create a newnode
and set it to the current node’sleft_child
. - If it does have the
left child
, we create a new node and put it in the currentleft child
’s place. Allocate thisleft child node
to the new node’sleft child
.
Let’s draw it out. :)

Here’s the code:
def insert_left(self, value): if self.left_child == None: self.left_child = BinaryTree(value) else: new_node = BinaryTree(value) new_node.left_child = self.left_child self.left_child = new_node
Again, if the current node doesn’t have a left child
, we just create a new node and set it to the current node’s left_child
. Or else we create a new node and put it in the current left child
’s place. Allocate this left child node
to the new node’s left child
.
And we do the same thing to insert a right child node
.
def insert_right(self, value): if self.right_child == None: self.right_child = BinaryTree(value) else: new_node = BinaryTree(value) new_node.right_child = self.right_child self.right_child = new_node
Done. :)
But not entirely. We still need to test it.
Let’s build the followingtree
:

To summarize the illustration of this tree:
a
node
will be theroot
of ourbinary Tree
a
left child
isb
node
a
right child
isc
node
b
right child
isd
node
(b
node
doesn’t have aleft child
)c
left child
ise
node
c
right child
isf
node
- both
e
andf
nodes
do not have children
So here is the code for the tree
:
a_node = BinaryTree('a') a_node.insert_left('b') a_node.insert_right('c') b_node = a_node.left_child b_node.insert_right('d') c_node = a_node.right_child c_node.insert_left('e') c_node.insert_right('f') d_node = b_node.right_child e_node = c_node.left_child f_node = c_node.right_child print(a_node.value) # a print(b_node.value) # b print(c_node.value) # c print(d_node.value) # d print(e_node.value) # e print(f_node.value) # f
Insertion is done.
Now we have to think about tree
traversal.
We have two options here: Depth-First Search (DFS) and Breadth-First Search (BFS).
- DFS “is an algorithm for traversing or searching tree data structure. One starts at the root and explores as far as possible along each branch before backtracking.” — Wikipedia
- BFS “is an algorithm for traversing or searching tree data structure. It starts at the tree root and explores the neighbor nodes first, before moving to the next level neighbors.” — Wikipedia
So let’s dive into each tree traversal type.
Depth-First Search (DFS)
DFS explores a path all the way to a leaf before backtracking and exploring another path. Let’s take a look at an example with this type of traversal.

The result for this algorithm will be 1–2–3–4–5–6–7.
Why?
Let’s break it down.
- Start at the
root
(1). Print it.
2. Go to the left child
(2). Print it.
3. Then go to the left child
(3). Print it. (This node
doesn’t have any children)
4. Backtrack and go the right child
(4). Print it. (This node
doesn’t have any children)
5. Backtrack to the root
node
and go to the right child
(5). Print it.
6. Go to the left child
(6). Print it. (This node
doesn’t have any children)
7. Backtrack and go to the right child
(7). Print it. (This node
doesn’t have any children)
8. Done.
When we go deep to the leaf and backtrack, this is called DFS algorithm.
Now that we are familiar with this traversal algorithm, we will discuss types of DFS: pre-order
, in-order
, and post-order
.
Pre-order
This is exactly what we did in the above example.
- Print the value of the
node
. - Go to the
left child
and print it. This is if, and only if, it has aleft child
. - Go to the
right child
and print it. This is if, and only if, it has aright child
.
def pre_order(self): print(self.value) if self.left_child: self.left_child.pre_order() if self.right_child: self.right_child.pre_order()
In-order

The result of the in-order algorithm for this tree
example is 3–2–4–1–6–5–7.
The left first, the middle second, and the right last.
Now let’s code it.
def in_order(self): if self.left_child: self.left_child.in_order() print(self.value) if self.right_child: self.right_child.in_order()
- Go to the
left child
and print it. This is if, and only if, it has aleft child
. - Print the
node
’s value - Go to the
right child
and print it. This is if, and only if, it has aright child
.
Post-order

The result of the post order
algorithm for this tree
example is 3–4–2–6–7–5–1.
The left first, the right second, and the middle last.
Let’s code this.
def post_order(self): if self.left_child: self.left_child.post_order() if self.right_child: self.right_child.post_order() print(self.value)
- Go to the
left child
and print it. This is if, and only if, it has aleft child
. - Go to the
right child
and print it. This is if, and only if, it has aright child
. - Print the
node
’s value
Breadth-First Search (BFS)
BFS algorithm traverses the tree
level by level and depth by depth.

Here is an example that helps to better explain this algorithm:

So we traverse level by level. In this example, the result is 1–2–5–3–4–6–7.
- Level/Depth 0: only
node
with value 1 - Level/Depth 1:
nodes
with values 2 and 5 - Level/Depth 2:
nodes
with values 3, 4, 6, and 7
Now let’s code it.
def bfs(self): queue = Queue() queue.put(self) while not queue.empty(): current_node = queue.get() print(current_node.value) if current_node.left_child: queue.put(current_node.left_child) if current_node.right_child: queue.put(current_node.right_child)
To implement a BFS algorithm, we use the queue
data structure to help.
How does it work?
Here’s the explanation.

- First add the
root
node
into thequeue
with theput
method. - Iterate while the
queue
is not empty. - Get the first
node
in thequeue
, and then print its value. - Add both
left
andright
children
into thequeue
(if the currentnode
haschildren
). - Done. We will print the value of each
node,
level by level, with ourqueue
helper.
Binary Search tree
“Un árbol de búsqueda binaria a veces se denomina árboles binarios ordenados u ordenados, y mantiene sus valores en orden ordenado, de modo que la búsqueda y otras operaciones pueden utilizar el principio de búsqueda binaria” - WikipediaUna propiedad importante de a Binary Search Tree
es que el valor de a Binary Search Tree
node
es mayor que el valor de la descendencia de su left child
, pero menor que el valor de la descendencia de su right child.
”

Aquí hay un desglose de la ilustración anterior:
- A está invertido. El
subtree
7–5–8–6 debe estar en el lado derecho y elsubtree
2–1–3 debe estar en el izquierdo. - B es la única opción correcta. Satisface la
Binary Search Tree
propiedad. - C tiene un problema: el
node
con el valor 4. Debe estar en el lado izquierdo delroot
porque es menor que 5.
Let’s code a Binary Search Tree!
Now it’s time to code!
What will we see here? We will insert new nodes, search for a value, delete nodes, and the balance of the tree
.
Let’s start.
Insertion: adding new nodes to our tree
Imagine that we have an empty tree
and we want to add new nodes
with the following values in this order: 50, 76, 21, 4, 32, 100, 64, 52.
The first thing we need to know is if 50 is the root
of our tree.

We can now start inserting node
by node
.
- 76 is greater than 50, so insert 76 on the right side.
- 21 is smaller than 50, so insert 21 on the left side.
- 4 is smaller than 50.
Node
with value 50 has aleft child
21. Since 4 is smaller than 21, insert it on the left side of thisnode
. - 32 is smaller than 50.
Node
with value 50 has aleft child
21. Since 32 is greater than 21, insert 32 on the right side of thisnode
. - 100 is greater than 50.
Node
with value 50 has aright child
76. Since 100 is greater than 76, insert 100 on the right side of thisnode
. - 64 is greater than 50.
Node
with value 50 has aright child
76. Since 64 is smaller than 76, insert 64 on the left side of thisnode
. - 52 is greater than 50.
Node
with value 50 has aright child
76. Since 52 is smaller than 76,node
with value 76 has aleft child
64. 52 is smaller than 64, so insert 54 on the left side of thisnode
.

Do you notice a pattern here?
Let’s break it down.
- Is the new
node
value greater or smaller than the currentnode
? - If the value of the new
node
is greater than the currentnode,
go to the rightsubtree
. If the currentnode
doesn’t have aright child
, insert it there, or else backtrack to step #1. - If the value of the new
node
is smaller than the currentnode
, go to the leftsubtree
. If the currentnode
doesn’t have aleft child
, insert it there, or else backtrack to step #1. - We did not handle special cases here. When the value of a new
node
is equal to the current value of thenode,
use rule number 3. Consider inserting equal values to the left side of thesubtree
.
Now let’s code it.
class BinarySearchTree: def __init__(self, value): self.value = value self.left_child = None self.right_child = None def insert_node(self, value): if value <= self.value and self.left_child: self.left_child.insert_node(value) elif value self.value and self.right_child: self.right_child.insert_node(value) else: self.right_child = BinarySearchTree(value)
It seems very simple.
The powerful part of this algorithm is the recursion part, which is on line 9 and line 13. Both lines of code call the insert_node
method, and use it for its left
and right
children
, respectively. Lines 11
and 15
are the ones that do the insertion for each child
.
Let’s search for the node value… Or not…
The algorithm that we will build now is about doing searches. For a given value (integer number), we will say if our Binary Search Tree
does or does not have that value.
An important item to note is how we defined the tree insertion algorithm. First we have our root
node
. All the left subtree
nodes
will have smaller values than the root
node
. And all the right subtree
nodes
will have values greater than the root
node
.
Let’s take a look at an example.
Imagine that we have this tree
.

Now we want to know if we have a node based on value 52.

Let’s break it down.
- We start with the
root
node
as our currentnode
. Is the given value smaller than the currentnode
value? If yes, then we will search for it on the leftsubtree
. - Is the given value greater than the current
node
value? If yes, then we will search for it on the rightsubtree
. - If rules #1 and #2 are both false, we can compare the current
node
value and the given value if they are equal. If the comparison returnstrue
, then we can say, “Yeah! Ourtree
has the given value,” otherwise, we say, “Nooo, it hasn’t.”
Now let’s code it.
class BinarySearchTree: def __init__(self, value): self.value = value self.left_child = None self.right_child = None def find_node(self, value): if value self.value and self.right_child: return self.right_child.find_node(value) return value == self.value
Let’s beak down the code:
- Lines 8 and 9 fall under rule #1.
- Lines 10 and 11 fall under rule #2.
- Line 13 falls under rule #3.
How do we test it?
Let’s create our Binary Search Tree
by initializing the root
node
with the value 15.
bst = BinarySearchTree(15)
And now we will insert many new nodes
.
bst.insert_node(10) bst.insert_node(8) bst.insert_node(12) bst.insert_node(20) bst.insert_node(17) bst.insert_node(25) bst.insert_node(19)
For each inserted node
, we will test if our find_node
method really works.
print(bst.find_node(15)) # True print(bst.find_node(10)) # True print(bst.find_node(8)) # True print(bst.find_node(12)) # True print(bst.find_node(20)) # True print(bst.find_node(17)) # True print(bst.find_node(25)) # True print(bst.find_node(19)) # True
Yeah, it works for these given values! Let’s test for a value that doesn’t exist in our Binary Search Tree
.
print(bst.find_node(0)) # False
Oh yeah.
Our search is done.
Deletion: removing and organizing
Deletion is a more complex algorithm because we need to handle different cases. For a given value, we need to remove the node
with this value. Imagine the following scenarios for this node
: it has no children
, has a single child
, or has two children
.
- Scenario #1: A
node
with nochildren
(leaf
node
).
# |50| |50| # / \ / \ # |30| |70| (DELETE 20) ---> |30| |70| # / \ \ # |20| |40| |40|
If the node
we want to delete has no children, we simply delete it. The algorithm doesn’t need to reorganize the tree
.
- Scenario #2: A
node
with just one child (left
orright
child).
# |50| |50| # / \ / \ # |30| |70| (DELETE 30) ---> |20| |70| # / # |20|
In this case, our algorithm needs to make the parent of the node
point to the child
node. If the node
is the left child
, we make the parent of the left child
point to the child
. If the node
is the right child
of its parent, we make the parent of the right child
point to the child
.
- Scenario #3: A
node
with two children.
# |50| |50| # / \ / \ # |30| |70| (DELETE 30) ---> |40| |70| # / \ / # |20| |40| |20|
When the node
has 2 children, we need to find the node
with the minimum value, starting from the node
’sright child
. We will put this node
with minimum value in the place of the node
we want to remove.
It’s time to code.
def remove_node(self, value, parent): if value < self.value and self.left_child: return self.left_child.remove_node(value, self) elif value self.value and self.right_child: return self.right_child.remove_node(value, self) elif value > self.value: return False else: if self.left_child is None and self.right_child is None and self == parent.left_child: parent.left_child = None self.clear_node() elif self.left_child is None and self.right_child is None and self == parent.right_child: parent.right_child = None self.clear_node() elif self.left_child and self.right_child is None and self == parent.left_child: parent.left_child = self.left_child self.clear_node() elif self.left_child and self.right_child is None and self == parent.right_child: parent.right_child = self.left_child self.clear_node() elif self.right_child and self.left_child is None and self == parent.left_child: parent.left_child = self.right_child self.clear_node() elif self.right_child and self.left_child is None and self == parent.right_child: parent.right_child = self.right_child self.clear_node() else: self.value = self.right_child.find_minimum_value() self.right_child.remove_node(self.value, self) return True
- First: Note the parameters
value
andparent
. We want to find thenode
that has thisvalue
, and thenode
’s parent is important to the removal of thenode
. - Second: Note the returning value. Our algorithm will return a boolean value. It returns
True
if it finds thenode
and removes it. Otherwise it will returnFalse
. - From line 2 to line 9: We start searching for the
node
that has thevalue
that we are looking for. If thevalue
is smaller than thecurrent nodevalue
, we go to theleft subtree
, recursively (if, and only if, thecurrent node
has aleft child
). If thevalue
is greater, go to theright subtree
, recursively. - Line 10: We start to think about the
remove
algorithm. - From line 11 to line 13: We cover the
node
with nochildren
, and it is theleft child
from itsparent
. We remove thenode
by setting theparent
’sleft child
toNone
. - Lines 14 and 15: We cover the
node
with nochildren
, and it is theright child
from it’sparent
. We remove thenode
by setting theparent
’sright child
toNone
. - Clear node method: I will show the
clear_node
code below. It sets the nodesleft child , right child
, and itsvalue
toNone
. - From line 16 to line 18: We cover the
node
with just onechild
(left child
), and it is theleft child
from it’sparent
. We set theparent
'sleft child
to thenode
’sleft child
(the only child it has). - From line 19 to line 21: We cover the
node
with just onechild
(left child
), and it is theright child
from itsparent
. We set theparent
'sright child
to thenode
’sleft child
(the only child it has). - From line 22 to line 24: We cover the
node
with just onechild
(right child
), and it is theleft child
from itsparent
. We set theparent
'sleft child
to thenode
’sright child
(the only child it has). - From line 25 to line 27: We cover the
node
with just onechild
(right child
) , and it is theright child
from itsparent
. We set theparent
'sright child
to thenode
’sright child
(the only child it has). - From line 28 to line 30: We cover the
node
with bothleft
andright
children. We get thenode
with the smallestvalue
(the code is shown below) and set it to thevalue
of thecurrent node
. Finish it by removing the smallestnode
. - Line 32: If we find the
node
we are looking for, it needs to returnTrue
. From line 11 to line 31, we handle this case. So just returnTrue
and that’s it.
- To use the
clear_node
method: set theNone
value to all three attributes — (value
,left_child
, andright_child
)
def clear_node(self): self.value = None self.left_child = None self.right_child = None
- To use the
find_minimum_value
method: go way down to the left. If we can’t find anymore nodes, we found the smallest one.
def find_minimum_value(self): if self.left_child: return self.left_child.find_minimum_value() else: return self.value
Now let’s test it.
We will use this tree
to test our remove_node
algorithm.
# |15| # / \ # |10| |20| # / \ / \ # |8| |12| |17| |25| # \ # |19|
Let’s remove the node
with the value
8. It’s a node
with no child.
print(bst.remove_node(8, None)) # True bst.pre_order_traversal() # |15| # / \ # |10| |20| # \ / \ # |12| |17| |25| # \ # |19|
Now let’s remove the node
with the value
17. It’s a node
with just one child.
print(bst.remove_node(17, None)) # True bst.pre_order_traversal() # |15| # / \ # |10| |20| # \ / \ # |12| |19| |25|
Finally, we will remove a node
with two children. This is the root
of our tree
.
print(bst.remove_node(15, None)) # True bst.pre_order_traversal() # |19| # / \ # |10| |20| # \ \ # |12| |25|
The tests are now done. :)
That’s all for now!
We learned a lot here.
Congrats on finishing this dense content. It’s really tough to understand a concept that we do not know. But you did it. :)
This is one more step forward in my journey to learning and mastering algorithms and data structures. You can see the documentation of my complete journey here on my Renaissance Developer publication.
Have fun, keep learning and coding.
My Twitter & Github. ☺
Additional resources
- Introduction to Tree Data Structure by mycodeschool
- Tree by Wikipedia
- How To Not Be Stumped By Trees by the talented Vaidehi Joshi
- Intro to Trees, Lecture by Professor Jonathan Cohen
- Intro to Trees, Lecture by Professor David Schmidt
- Intro to Trees, Lecture by Professor Victor Adamchik
- Trees with Gayle Laakmann McDowell
- Binary Tree Implementation and Tests by TK
- Coursera Course: Data Structures by University of California, San Diego
- Coursera Course: Data Structures and Performance by University of California, San Diego
- Binary Search Tree concepts and Implementation by Paul Programming
- Binary Search Tree Implementation and Tests by TK
- Tree Traversal by Wikipedia
- Binary Search Tree Remove Node Algorithm by GeeksforGeeks
- Binary Search Tree Remove Node Algorithm by Algolist
- Learning Python From Zero to Hero